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Objective

The goal of this project is to design a complete Reinforcement Learning-based system

capable of solving a particular task by processing rich visual input and interacting

with the environment. The most interesting feature of the system is that it does

not incorporate any prior knowledge about either the task, the environment nor the

nature of actions it can possibly take. For the purpose of the project, Breakout

was chosen as a primary problem for its simplicity and availability of an easy-to-use

game emulator although the same agent could be applied to other Atari games. The

algorithm improves its game playing strategy by repeatedly playing the same game

thousands of times gradually getting better and scoring more points.

Achievements

In order to handle the project’s complexity, it has been split into two parts by

introducing a secondary problem, the Grid world, of smaller scale whose successful

completion is necessary but not sufficient for solving the main task. It has helped

debug, compare the performance and discuss design trade-offs associated with various

learning routines. All the RL methods used are based on Q-learning - an off-policy,

online and model-free algorithm which may be easily represented in a parametric

form. It is important to note that the overall system has been designed to support

modularity following object-oriented principles to allow the same agent to be used

for both tasks using different input preprocessing front-ends.

Grid world

Grid world is a simple RL task used here primarily for debugging and ensuring cor-

rectness of learning routines. It serves as a testbed for more sophisticated algorithms

since it may be easily solved using simpler methods. Three variants of Q-learning

have been implemented: exact one for each state and action pair as well as approxi-

mate ones based on Gaussian Radial Basis Functions and neural networks.
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Breakout

Atari games, used as standard RL benchmarks, produce clean signals and allow for

performing lengthy training procedures infeasible under real world conditions. The

game used in this project, Breakout, is relatively simple as it does not include a second

player and uses just a small set of actions. In principle, given the mechanics of the

game, i.e. information about ball’s velocity, it is possible to create a nearly perfect

player however the agent used in the experiment knows nothing about the game

structure. Its capability of learning from visual feed makes it both really complex

and powerful at the same time as it may be applied to a range of other tasks without

any significant changes.

Extended testing

Despite all the precautions put in place, the debugging of a convolutional neural net-

work has proven to be very tricky both from an algorithmic and software engineering

perspective. Hence two extensions to the Grid world have been used to identify and

isolate possible errors. The first one consists of two plain images - black and white -

associated with two terminal rewards allowing to check whether the network is capa-

ble of learning simple patterns. The second extension tests program’s RL capability

through transforming the Grid world into a 2D problem by associating each state

with an image from the MNIST database.

Results

The project has proven to be very challenging especially from the computational

point of view requiring various code modifications aimed at either improving memory

complexity or increasing neural network’s training rate. Despite numerous debugging

attempts, a memory leak has prevented the system from completing its lengthy

training procedure by causing the system to run out of RAM. The bug has turned

out to be located inside Theano’s automatic differentiation module independent of

project’s source code. Nevertheless, the agent has shown signs of learning despite

the completion of a fifth of intended training’s length only.

Conclusions

A Reinforcement Learning system supporting common interfaces used in the research

community has been built with its modular design making it easily extensible to in-

clude other learning algorithms, agent strategies, sampling methods and input types.

Current implementation is capable of learning, in addition to simpler test problems,

to play a 2D game although needs debugging of an open source external library.

The approach taken has plenty of scope for improvement using more computational

resources as well as it may be applied to many other problems.
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1 Introduction

1.1 Motivation

The original idea behind the project was to combine different areas of Machine Learning,

namely Deep Neural Networks, Reinforcement Learning and Bayesian inference, and tackle

a real world problem related to challenges outlined in Yoshua Bengio’s publication [24].

The direct inspiration came from a paper [5] published by DeepMind, a London-based

start-up focusing on Deep Learning. It describes in broad terms an algorithm capable

of learning to complete several different assignments satisfactorily. Due to accumulated

experience, tasks themselves do not seem to be particularly hard for humans, however

the algorithm itself does not incorporate any prior knowledge about them which is what

makes it particularly interesting. An agent is presented with highly-dimensional visual

input only and interacts with an environment by receiving reward signals and reacting

to them without knowing anything about the nature of actions it may take. Its training

involves repeating the assigned task numerous times hence, due to huge complexity of real

world problems, different Atari computer games were used initially as a proof-of-concept.

The algorithm used by DeepMind has outperformed previous state-of-the-art approaches

encouraging finding other use cases for it and investigating the algorithm further. Using

visual feed as an input suggests that the same method can be potentially used in real world

applications as long they may be adapted to fit the Reinforcement Learning framework.

The goal of this project is to gain deeper understanding of Reinforcement Learning and

Neural Networks by developing an algorithm yielding comparable results to the published

paper [5] and extending it later. The report describes the approach taken by first intro-

ducing the theory behind it and later presenting a thorough description and analysis of

the practical aspects associated with implementing it.

1.2 Tasks

The project required implementing several non-trivial algorithms as well as performing a

computationally-intensive training scheme. Highly-dimensional visual input and an appli-

cation comprising several separate components made testing particularly difficult hence it

was beneficial for debugging purposes to introduce a secondary problem of smaller scale

with a known solution.

1.2.1 Primary problem

The approach described by DeepMind [5] was applied to 49 different Atari games featuring

various complexity levels and goals to be accomplished. Their relative difficulty depended

on several factors including whether it was played against a computer opponent or how

many actions an agent could choose from. For the purpose of this report, Breakout was

chosen for the simplicity of game objectives and a limited set of possible actions.
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The goal of the game is to hit as many coloured bricks with a ball as possible. The

environment allows it to bounce off bricks, walls and a paddle as shown on Figure 1.

Rewards associated with each brick are the same although upper layers accelerate the ball

slightly upon contact.1 The agent controls the red paddle and at each frame it can decide

either to stay in the same position or move left or right. A single game ends when a player

misses a total of 5 balls or scores all the bricks. It is worth noting that the score displayed

on top of the screen is irrelevant from the project’s perspective as the algorithm receives

reward signals straight from the environment.

Figure 1: Screenshot from Atari’s Breakout game

1.2.2 Secondary problem

Grid world is a simple problem often used to illustrate basic concepts of the Reinforcement

Learning area. Its simplicity makes it suitable for testing and debugging RL algorithms as

it can be solved at a relative ease.

For the purpose of this report, a 5 ˆ 6 grid shown on Figure 2 was used. At the be-

ginning of each episode, the agent is placed at a random tile and its goal is to collect a

maximum reward by making a maximum of 11 moves. At each step it can move in four

directions unless it is at one of the edges. An episode may also terminate when the agent

reaches the top left corner associated with a positive reward. In fact, the optimal policy

is equivalent to finding the shortest distance to the top left corner in the Manhattan metric.

1The game has no negative rewards
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Figure 2: Grid world problem rewards layout
and scope

1.3 Project outline

A relatively long timescale for an undergraduate assignment and expected difficulty, re-

quired following a carefully devised strategy from the onset. In order to handle problem’s

scale and scope, the workload had to be spread evenly across the whole year gradually

building up complexity by implementing new features. It was of utmost importance to

split the project into several independent modules in accordance with object oriented

programming principles letting individual components be modified and replaced without

breaking existing functionality. Such separation also made debugging easier by allowing

each component to be tested independently before integrating it with the whole system.

The outline of a high level, initial plan:

1. Build the Grid world using RL-Glue framework

2. Implement Q learning algorithm using

(a) Exact state-action values look-up table

(b) Linear architectures approximator with Gaussian basis functions

i. solved using Normal equations (LSPI [8])

ii. trained using Stochastic Gradient Descent

(c) Neural Network approximator

3. Implement Experience Replay sampling strategy

4. Build a Convolutional Neural Network using a CPU

5. Replace Grid world’s environment with signals from Atari’s emulator for Breakout

6. Optimize for CUDA computing and train the model on a GPU
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1.3.1 Modifications

The high level plan did not change much throughout the project although some parts

took longer than expected to complete or required extra testing and bug fixing effort. An

especially troublesome part was the implementation and debugging of a Convolutional

Neural Network due to its high complexity and issues related to CUDA computing.

1.4 Challenges

The project proved to be challenging for several reasons, most of which had been antici-

pated during the planning phase. Despite the lack of prior exposure to Reinforcement and

Deep Learning areas, grasping theoretical concepts was generally less difficult than solving

practical issues which arose over the course of the project.

1.4.1 Problem scale

The greatest challenge of the Breakout RL task is its scale directly related to a highly-

dimensional visual input fed into the agent which allows the algorithm to generalise well

to other games without incorporating any information about their structure. In principle,

game dynamics are straightforward and can be described by analysing ball’s motion making

it is easy to compute the optimal path of the paddle. The algorithm, however, is presented

with a feed of 84 ˆ 84 pixels each of which, discarding colours and limiting precision to

8 bits, can take one of 256 values leading to 25684˚84 “ 28˚84˚84 “ 256448 distinct input

states. Needless to say it is impossible to store optimal actions for each state and hence a

really powerful approximator with enough parameters is required in order to provide good

generalisation.

1.4.2 Software complexity

Another troublesome issue stems from an inherent complexity of combining elements from

multiple theoretical areas, using libraries from sources under ongoing development and, at

times, modifying someone else’s source code. Despite following object oriented principles

and using version control during the development, the daily-increasing complexity of the

program and changing external libraries caused a few problems over the course of the

project. It is worth mentioning, however, that if it had not been for design precautions

taken, solving issues related to software design would have required much more effort.

1.4.3 GPU implementation

An approximator based on a Convolutional Neural Network contains a lot of parameters

which need to be initialised and optimised. However, the structure of a neural network

and frequent transformations of 2D data such as convolution can greatly benefit from

performing them on a CUDA-enabled GPU. Graphics cards include plenty of parallel

computing units especially capable of manipulating matrices. As such, running GPU-

optimized code can speed up training of CNNs even 14 times [9]. Nevertheless, it was
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challenging to debug and optimize the code for a GPU due to the lack of previous exposure

to CUDA programming.

1.4.4 Training procedure

Optimisation of a deep neural network is a very computationally intensive task due to a

very large number of model parameters. For example, the architecture used in this project

contains 1638515 distinct parameters. Their robust estimate requires a significant number

of samples greatly complicating model’s training procedure. Despite an order of magnitude

speedup through the use of a GPU, it still took around a day of computing time to obtain

relatively reasonable estimates. As such, it made evaluating model’s trained parameters

take longer slowing down the overall development process.

2 Reinforcement Learning framework

RL is a computational approach to learning from interacting with the surrounding world.

The goal of RL algorithms is to learn what to do at a particular state of the environment

in order to maximise total numerical reward collected over the course of interaction. It

must discover what actions yield the best long-term rewards by trying various sequences

of them. In many problems, including Atari games, each action taken has an effect not

only on immediate rewards but also on all the subsequent ones making learning more

complicated. Determining which actions lead to later rewards, a so called temporal credit

assignment problem [31], is the crux of RL.

The following subsections formulate a more rigorous description [1] of the Reinforcement

Learning framework described above.

2.1 Definitions

2.1.1 The agent-environment model

An RL problem can be specified formally by introducing the agent-environment framework,

conceptually shown on Figure 3, where the agent is a decision maker controlled by an RL

algorithm and everything it does not have absolute control over or only interacts with is

considered to be part of the environment. The environment provides the agent with its

state and an immediate reward. For the purpose of this paper, the agent and environment

interact with each other at discrete time steps t “ 0, 1, ... although in general it is possible

to extend it to a continuous-time case[1].
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Figure 3: The agent-environment interaction, figure taken from [2]

2.1.2 State space

At each time step t, the environment provides an agent with its current state, st P S, where

S is a set of possible states. For the Grid world problem, two different representations of

state spaces were used:

• S “ t0, ..., 29u corresponding to each of 30 tiles

• S “ tI0, I1, ..., I29u, where Ik “ ra0, ..., a29s
T , ak “ 1, ai‰k “ 0 is an indicator vector

corresponding to the k’th tile

In case of the Breakout task, the situation is more complicated and each state is repre-

sented by a set of last 4 consecutive game frames txt, xt´1, xt´2, xt´3u preprocessed using a

function Φpxq to reduce their dimensionality and make them suitable for CUDA-optimised

convolutional operators. Hence:

• st “ tΦpxtq,Φpxt´1q,Φpxt´2q,Φpxt´3qu

2.1.3 Action space

Similarly to the state space, at each time step t the agent chooses an action at P Apstq,
where Apstq is a set of actions available at state st. In both tasks, Apstq is the same

regardless of the state:

• Grid world - A “ t0, ..., 3u, corresponding to left, right, up, down moves respectively

• Breakout -A “ t0, 1, 2u, corresponding to left, right, do not move actions respectively

Note: environments do not have to be deterministic, i.e. taking an action at in state st

may lead to several other states according to hidden transition probabilities of the model.

Also, in the Grid world the agent cannot step off the Grid suggesting that Apstq is not

the same for all the states. The environment implemented, however, allows all the actions

to be taken resulting in the agent staying in the same position in case it tries to step off.
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2.1.4 Reward

An essential part of the RL framework is a numerical reward signal, rt P R, which the

agent receives from the environment. These rewards usually cannot be attributed to any

particular action but rather to a whole sequence of previous states visited and actions

pst, atq, pst´1, at´1q, ..., ps0, a0q taken before.

2.1.5 Returns

The objective of an RL algorithm may be more formally expressed in terms of a long-term

return at time t, Rt, which is described using a standard discounting technique:

Rt “ rt`1 ` γrt`2 ` ...` γ
T´1rt`T “

T´1
ÿ

k“0

γkrt`1`k

where γ is a discount factor and the game terminates at time t` T . Small value of γ puts

more emphasis on immediate rewards whereas γ « 1 makes the agent more far-sighted.

2.2 Policy

Policy is the probability distribution πtps, aq over states and actions at time step t of

selecting a particular action a while being in a state s. Formally, the goal of an agent is

to learn a policy which maximises the expected discounted return over the long run.

2.3 Markov Decision Process

The Reinforcement Learning framework states that the agent makes its decisions solely

based on a signal from the environment - its state. In particular, the state should be as

informative as possible to allow the agent to choose what to do without having to consider

the sequence of all previous states. In other words, it should act as a summary of all the

past interactions. A state defined in such way is said to be Markovian [1]:

Prtst`1 “ s1, rt`1 “ r | st, at, rt, st´1, at´1, ..., r1, s0, a0u “ Prtst`1 “ s1, rt`1 “ r | st, atu

meaning that its one-step dynamics allow to predict the next state and expected reward

given the current state and action only. A reinforcement learning task with finite state and

action spaces satisfying the Markov property is called a finite Markov Decision Process.

Such assumption underlies all the Reinforcement Learning algorithms discussed and used

in this report. Although it is straightforward to see that Grid world’s environment is in

fact Markovian, it is not immediately clear for Breakout. By considering each frame of the

game as a separate state it is easy to see that it violates the Markovian assumption as it

is impossible to infer ball’s velocity from a single frame. In fact, it may not be possible to

do so from two consecutive frames either in case the ball bounces off a paddle following

the incoming trajectory. Figure 4 shows two consecutive frames where the ball is in the

same position despite that it is in fact moving. Forming a single state from the last 4
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consecutive frames, although still not entirely Markovian, offers a good approximation and

can be used successfully for Atari games.

Figure 4: Illustration of Markov-violating state representation

2.4 Action-value function

The majority of Reinforcement Learning algorithms try to find an optimal policy by eval-

uating how good a given state is based on the notion of estimating expected long term

discounted return. There are two concepts which can be used - state or state-action value

functions. The latter one is generally more convenient to use as it makes selecting optimal

actions easier and hence forms the basis of all the methods used in this report. In fact,

using only the state value function would require a simulation to perform policy improve-

ment since the agent is not given environment’s transition probabilities. In other words, it

does not know which state a particular action would take him to until it actually tries it.

Formally, a state-action value function is defined:

Qπ
ps, aq “ EπtRt | st “ s, at “ au “ Eπ

!

8
ÿ

k“0

γkrt`k`1 | st “ s, at “ a
)

where Rt is the expected return starting from time t and π is the followed policy. In other

words, it is the expected long term return of taking action a in state s and following policy

π thereafter. The task of all the RL algorithms is to find an optimal Q function, that is:

@aPA,sPS Q˚ps, aq “ max
π

Qπ
ps, aq

2.5 Epsilon greedy strategy

One of the more important design decisions to make when implementing an RL algorithm

is the choice of a strategy for the agent to follow. It entails two aspects which need to be

considered when devising one, namely exploitation and exploration. In general, the agent

needs to try the actions which have been effective in the past in order to obtain more reliable
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value estimates, that is to exploit what it already knows. At the same time it needs to

take non-optimal actions as there might be a more beneficial trajectory through the state

space about which the agent simply does not know yet. Epsilon-greedy is an approach

which offers a trade-off between the two by taking a random action with probability ε and

an optimal one otherwise. Usually, ε is initialized to a high value encouraging exploration

initially and goes down as the game progresses placing more emphasis on exploitation.

2.6 Sampling techniques

The optimization routine used to train Q-function approximators is based on Stochastic

Gradient Descent method. It requires, as discussed in Section 4.3.7, a batch of samples

to perform a parameter update. The task, however, differs from other Machine Learning

problems in a way that there is no static dataset to use for updates but new datapoints

are generated in real time while playing.

2.6.1 Online

The simplest way of selecting samples for an SGD update is to use online updates, that is

to use a batch of size 1, selecting the most recent input vector and discarding it afterwards.

For smaller problems when it is easy to obtain many samples, like the Grid world, it may

be an efficient way of optimising parameters although for more complicated inputs and

larger models it does not work well.

2.6.2 Experience Replay

The scale of the Breakout problem renders online sampling inadequate considering how

long it takes to update all parameters and generate new samples from the emulator hence a

method similar to mini-batch updates is more useful. The dynamic nature of the problem,

opposed to for example the MNIST challenge [26], means that the agent needs to generate

and maintain its own dataset for parameter updates. Experience Replay technique tries

to imitate that by keeping a history of the last N frames and drawing samples from a

uniform distribution for each parameter update. Section 5.4.1 describes design trade-offs

associated with implementing the ER sampler.

3 Computing the optimal Q function

There are several methods of finding the optimal Q function depending on the task involved

although they all make use of the fact that a state-action value function is a solution to

Bellman’s optimality equation for a given policy π:

Qπ
ps, aq “ Rps, aq ` γ

ÿ

s1

P ps, a, s1qmax
a1

Qπ
ps1, a1q

where P ps, a, s1q is the probability of a transition from s to s1 by taking action a, and

Qπps, aq is stored for any combination of state and action. A similar equation can be
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derived for a state value function, V psq, which can be, in fact, expressed in a matrix form

and solved by an appropriate matrix inversion [1] however it is not only infeasible for larger

state spaces but also iterative methods are usually faster.

3.1 Monte Carlo methods

Bellman’s optimality equation in its standard form assumes that the model of the en-

vironment, that is transition probabilities P ps, a, s1q, is known allowing to compute the

appropriate sum. For most problems the model is not known a-priori although there are

ways of estimating it. Usually, however, one needs to resort to sampling-based Monte Carlo

methods which assume that samples used in updates follow appropriate distributions.

3.2 Dynamic programming

As mentioned in Section 3, it is possible to calculate the solution Qπ to the Bellman

optimality equation of an MDP through an iterative scheme one of which is a Dynamic

Programming approach. It initializes Qπ arbitrarily and keeps updating it afterwards until

a termination condition is met:

Qπ
pk`1q Ñ R ` γP πQπ

pkq

Due to P π being a non-expansion [1], the algorithm converges to the state-action value of

a given policy. The main problem of a method described above, namely Value Iteration,

is that it only evaluates a given policy without estimating the optimal one. Hence it

needs to update its policy afterwards, that is to perform Policy Improvement, based on

newly estimated values and repeat the cycle until convergence as shown conceptually on

Figure 5. Not only is prohibitively expensive for problems with larger state spaces but also

it requires environment’s transition model to be known which is usually not true for RL

problems hence other methods are used.

Figure 5: Generalized policy iteration, figure taken from [3]
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3.3 Temporal Differences algorithm

TD algorithms combine good aspects of both DP and Monte Carlo methods forming a

more suitable algorithm for the Breakout problem. They update their estimates based in

part on other learned estimates without waiting for them to converge as in Policy Iteration

method. They also learn directly from interacting with the environment without knowing

neither estimating its model.

3.3.1 Q-Learning

An especially interesting method is the off-policy TD algorithm, Q-Learning, fort its ability

to approximate the optimal state-action value function independently of the policy being

followed as opposed to SARSA [1]. It ensures correct convergence as long as all the state-

action values keep getting updated regularly [1]. Q-learning follows the rule:

Qpst, atq Ð Qpst, atq ` α
”

rt`1 ` γmax
a
Qpst`1, aq ´Qpst, atq

ı

In other words, at each step it tries to decrease the temporal difference between the current

state-action estimate Qpst, atq and its stochastic expected value based on the immediate

reward and next state’s estimated value.

4 Approximations of Q function

The Reinforcement Learning framework introduced in Section 2 described the theory be-

hind solving an RL problem by estimating the state-action value function Q for each pair

pst, atq. In many practical problems, including Breakout, it is not only impossible to esti-

mate but even to store it for every data point. A standard way of tackling such problems

by expressing the value function in a parametric form, Q̂ps, a, ωq, usually results in re-

duced storage requirement by having to keep parameters ω only. Depending on the task’s

complexity, the choice of an approximator function and its form offers a trade-off between

computational complexity and approximating capacity. In the limit, one may construct a

function Q̂ps, a, αq “
ř

si,aj
δps´ si, a´ ajqαsi,aj which is a sum of delta functions centred

around every possible state-action pair without achieving any storage saving and being

equivalent to the exact Q-learning algorithm.

This section explores the application of two approximating function families to tasks out-

lined in the introduction. One of them, based on linear architectures, is only used in the

Grid world problem as it makes no sense applying it to the Breakout game due to the size

of its state space. On the other hand, a neural network is applied to both tasks with slight

architectural changes. In both cases the Q-learning update from Section 3.3.1 is replaced

with minimization of the least-squares cost function with respect to model parameters [1]:
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Lpωq “
1

2

n
ÿ

i

P ps, a, s1q
´

Q˚ps1i, aiq ´Qpsi, ai, ωq
¯2

«
1

2n

n
ÿ

i

´

Q˚ps1i, aiq ´Qpsi, ai, ωq
¯2

where Q˚psi, aiq is the temporal differences update target which is considered constant in

the parameter optimization. The approximation assumes that sample tuples were drawn

from an appropriate distribution.

4.1 Linear architectures model

An approximator may be formed as a linear combination of hand-crafted basis functions

Φips, aq. The number of basis functions, k, is arbitrary and their forms are often adjusted

to fit a particular type of a state space:

Q̂ps, a, ωq “
k
ÿ

i“1

φips, aqωi “ ωTΦps, aq

A popular approach is to use a set of regularly distributed radial basis functions, often

Gaussian, covering well the state space. Usually there is a separate set of linear coefficients

for each action. Individual Gaussian basis function can be expressed as:

Φi,apsq “ exp
´

´ ps´ µi,aq
TΣ´1

i,a ps´ µi,aq
¯

Φps, aq “
”

φ1,a1psq, φ1,a2psq, ..., φ1,aApsq, φ2,a1psq, ..., φk,aApsq
ıT

where A is the number of available actions and k is the number of basis functions. The

parameters µ and Σ of Gaussian radial basis functions Φips, aq are usually fixed and not

subject to optimization. The vector Φps, aq above is kA dimensional and hence the whole

model has kA parameters specified by a vector ω which need to be optimized. It is possible

to find optimal parameters through constructing and manipulating appropriate matrices

as described in [8] however it is, in fact, equivalent to running a stochastic gradient

descent algorithm on a TD-error cost function. Samples collected through interacting

with the environment implicitly model their probability distribution in a similar fashion

to MC methods from Section 3.1. Consider an L2 norm cost function for one sample tuple

ps, a, r, s1q:

Lpωq “
1

2

´

r ` γmax
a1

Q̂ps1, a1;ωq ´Qps, a;ωq
¯2

“
1

2

´

r ` γmax
a1

Q̂ps1, a1;ωq ´ ωTΦps, aq
¯2
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TD-estimate, pr`γmaxa1 Q̂ps1, a1;ωqq, is considered constant while optimizing with respect

to ω, hence the gradient BL
Bω

can be calculated:

BL

Bω
“

´

r ` γmax
a1

Q̂ps1, a1;ωq ´ ωTΦps, aq
¯

Φps, aq

4.1.1 Grid world basis functions

Grid world’s state space can be represented as a 2D map through which the agent may

navigate in order to find the reward. It seems natural to describe its state-action value

function with a set of 2D radial basis functions located on a regular grid in between the

tiles with standard deviation large enough to provide overlap between consecutive ones as

conceptually shown on Figures 6 and 7 below:

Figure 6: RBFs for the Grid world problem Figure 7: 3D visualisation of RBFs

4.2 Neural network for the GridWorld

Neural networks offer another approach to approximating Q-function by creating its para-

metric form. They are considered to be universal approximators [11] and experience a

huge surge in popularity these days [29]. Hence it is interesting to include them in the

comparison with other discussed methods considering the fact that their variation is also

used in the Breakout task.

Note: the same cost function for a single tuple ps, a, r, t, s1q is used as in Section 4.1:

Lpωq “
1

2n

n
ÿ

i

´

Q˚ps1iq ´Qpsi, ai, ωq
¯2

where Q˚ps1i, ai, ωq is the TD estimate considered to be constant in the optimization.

Q˚ps1iq “

#

ri ` γmaxaQps
1
i, a, ωq if s1i is a non-terminal state

ri otherwise
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4.2.1 Input preprocessing

The idea behind applying a neural network to the Q-learning algorithm is to model Qps, aq

using a single feed-forward network for all actions. It is possible to take a similar ap-

proach to linear architectures and keep distinct models for each action. However, it is

more appealing to use a single neural network with several outputs corresponding to each

action in order to save on computation and the number of parameters. Such model takes

a state s as an input and produces a state-action value for each action a at its output nodes.

It is important to notice, however, that the input to the model should not be a single

decimal number corresponding to the state s as it would make it harder for the network

to distinguish between distinct states. This problem is especially apparent when issues of

vanishing gradients and saturating neurons are taken into account as states would differ

just by a scaling factor. Instead, a better approach is to represent each state with an N

dimensional binary vector:

fpsq “ ra1, a2, ..., aN s

There are multiple ways of mapping Grid world states into binary representations however

two of them are relatively straightforward. For example, its decimal value may be expressed

in a binary system thus requiring only 5 input neurons as 25 ě 30. Another, even simpler

approach mentioned in Section 2.1.2 is to use a 30-dimensional indicator vector:

fps “ kq “ ra1 “ 0, a2 “ 0, ..., ak “ 1, ..., , aN “ 0sT

4.2.2 Architecture

The size and complexity of the Grid world problem does not require a large and deep

network to yield a good approximation of a Q function. Hence it provides a good test bed

for methods and libraries used to build neural network models.

The network used consists of three layers - input, output and a fully connected hidden one

in the middle as shown on Figure 8 below.

State indicator

State indicator

State indicator

State indicator

Up

Left

Right

Down

Input
layer, 30

Hidden
layer, 4

Output
layer, 4

Figure 8: Neural network architecture for the Grid world
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4.3 Convolutional Neural Network for Atari games

A powerful Q-function approximator based on a large neural network is particularly ap-

plicable to higher-dimensional problems with much bigger state spaces. The visual 2D

representation of a state bears a lot of resemblance with static images which exhibit plenty

of locally spatial and temporal dependencies. It has been shown in the literature that

adding convolutional layers on top of a few fully connected hidden layers yields good re-

sults in classifying images [7]. In theory, such network is a special case of a fully connected

one however tying parameters through the use of convolutional filters adds in not only

translation invariance to recognizing features but also significantly reduces the number of

parameters making optimization easier and require less training data.

Note: the same cost function is used as in Section 4.2.

4.3.1 Input preprocessing

The visual feed from the Atari emulator is transferred in an RGB format where each pixel

is represented by three unsigned bytes corresponding to each colour. Although including

all the colour channels as part of an input is possible due to the way a convolutional neural

network works, it would be impractical as the colour does not usually matter in action

games. In most of the Atari ones, especially in Breakout, the colour of pixels does not

convey any information useful for understanding the situation on the screen. In fact, the

agent would be equally knowledgeable if it was given a black and white representation

of a game screen instead as shown on Figure 9. It is clear that the greyscale conversion

preserves the game structure needed to play it successfully. Contours of paddles and bricks

may still be recognized despite three fold reduction in input’s dimensionality. The visual

feed is also cropped to a square discarding useless elements such as the score counter on

top and subsampled by two to reduce the dimensionality even further.

Figure 9: Greyscale display
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4.3.2 Primary architecture

The initial CNN used in this project consisted of an input layer, three convolutional layers,

a fully-connected hidden one and an output as shown on Figure 10. The properties of each

layer used are listed in Table 1:

Layer Activation function Filter size Stride # of filters # of nodes
First convolutional Rectifier 8ˆ 8 4 32 N/A
Second convolutional Rectifier 4ˆ 4 2 64 N/A
Third convolutional Rectifier 3ˆ 3 1 64 N/A
Hidden Rectifier N/A N/A N/A 512
Output Identity N/A N/A N/A 3

Table 1: Primary convolutional neural network properties

Frame #1

Frame #2

Frame #3

Frame #4

Right

Left

Don’t move

Input
layer

Convolutional
layer,

32 filters

Convolutional
layer,

64 filters

Convolutional
layer,

64 filters

Hidden
layer,
512

Output
layer, 3

Figure 10: Breakout’s primary network architecture

4.3.3 Secondary architecture

During the experiments, the initial convolutional neural network turned out to be quite

complex and computational requirements of its training procedure exceeded available re-

sources hence a second architecture was also considered. Compared to the primary one,

it only had two convolutional layers and fewer nodes in the fully-connected hidden one as

shown on Figure 11. The properties of each layer used are listed in Table 2:

Layer Activation function Filter size Stride # of filters # of nodes
First convolutional Rectifier 8ˆ 8 4 16 N/A
Second convolutional Rectifier 4ˆ 4 2 32 N/A
Hidden Rectifier N/A N/A N/A 150
Output Identity N/A N/A N/A 3

Table 2: Secondary convolutional neural network properties
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Frame #1

Frame #2

Frame #3

Frame #4
Right

Left

Don’t move

Input
layer

Convolutional
layer,

16 filters

Convolutional
layer,

32 filters

Hidden
layer,
150

Output
layer, 3

Figure 11: Breakout’s secondary network architecture

4.3.4 Convolutional layers

Convolutional layers at the bottom of a neural network are essential in achieving their high

performance in recognizing or classifying pictures. Each convolutional layer consists of a

set of 2D filters which are convolved with an input image to find areas most similar to the

filter itself. The response at a particular pixel pi, jq to the k’th filter is given:

zki,j “ pW
k ˚ xqi,j ` bk

where W k are filter weights, bk is filter’s bias and ˚ is a convolutional operator.

4.3.5 Rectifier non-linearity

A standard neural network’s node, in addition to calculating a weighted sum of its inputs

and adding a bias, applies a, usually non-linear, activation function in order to improve

its performance or speed up the training process. There are many widely used activa-

tion functions depending on an application however the literature suggests that a rectifier

non-linearity yields the best performance for convolutional neural networks and 2D input

data [7]:

fpaq “ maxp0, aq

4.3.6 Parameter initialization

Multi layer perceptrons were first introduced in 1980s and quickly became popular when

people discovered performance and generalisation gains arising from adding a hidden layer.

The discovery led many people to believe that adding more layers would yield even greater

improvements. These more complex models, however, did not deliver satisfactory perfor-

mance due to problems associated with their training and initialization [18][23] resulting in

parameters converging to bad local minima. Only recently deep learning models became

popular due to a breakthrough in their initialization [13] giving rise to many successful ap-

plications. For the purpose of this report, two methods of random parameter initialization

are considered:
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• ω „ N p0, σ2q where sigma depends on characteristics of each layer [23]

• ω „ Ur´a, as where a is a preset constant

4.3.7 Stochastic gradient descent with a mini-batch

Neural networks, although powerful, are particularly hard to train and prone to many

problems including getting stuck in suboptimal local minima of a cost function [18]. They

usually require expert knowledge in choosing the architecture as finding optimal hyperpa-

rameters is prohibitively expensive in a computational sense. On the other hand, a very

large number of model parameters and huge cost of evaluating them renders more sophisti-

cated global optimisation methods, for example, evolutionary algorithms simply infeasible.

Gradient descent with mini-batches is a standard method used for training neural networks

however, in case of this report, its stochastic version is more suitable. The standard update

form at the pk ` 1q’th iteration is the following:

ωpk`1q
“ ωpkq ´ η

N
ÿ

n“1

1

N

BLpxnq

Bω

ˇ

ˇ

ˇ

ˇ

pkq,xn„X

where η is a learning rate, xn are input samples drawn from distribution X and L is the

cost function to be optimized.

4.3.8 RMSProp

There are many suggested improvements to a basic stochastic gradient descent algorithm

aimed at providing faster learning. Some of them make use of previous updates through

a momentum term, utilize second order information or adjust learning rates for each pa-

rameter individually. RMSProp [6] is one of such techniques which works reasonably well

for neural networks. It adjusts a particular learning rate using a running average g1 of its

squared gradients as shown below:

ηpk`1q
“

α
b

γ0 ` g
pk`1q
1

g
pk`1q
1 “ ρ1g

pkq
1 ` p1´ ρ1q

´

BL

Bω

¯2

It is worth noting that there is an inverse relationship between gradient’s magnitude and

its learning rate. γ0 coefficient determines a maximum learning rate and ensures that the

square root is proper. The running average is initialized as g
p0q
1 “ 0.

Note: mini-batch notation has been omitted here for clarity. Gradient in the expression

for the running average is evaluated using parameters from k’th iteration.
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4.3.9 Extended RMSProp

It may be useful for certain problems to include an element which would have a similar

effect to introducing a momentum term. It can be done by using a running average of

gradients g2 initialized in a similar fashion to the regular RMSProp (g
p0q
2 “ 0^ g

p0q
1 “ 0):

ηpk`1q
“

α
b

γ0 ` g
pk`1q
1 ´

`

g
pk`1q
2

˘2

g
pk`1q
2 “ ρ2g

pkq
2 ` p1´ ρ2q

´

BL

Bω

¯

The expression in the denominator may appear at first to become negative for certain

values of tg1, g2u however it can be proven that it is strictly positive for ρ1 “ ρ2. Letting

the i’th previous gradient be βi allows the running averages to be expressed:

g
pk`1q
2 “ ρ2g

pkq
2 ` p1´ ρ2qβpkq “ ρ2pρ1g

pk´1q
2 ` p1´ ρ2qβpk´1qq ` p1´ ρ2qβpkq “ ...

“ p1´ ρ2qβpkq ` ρ2p1´ ρ2qβpk´1q ` ρ
2
2p1´ ρ1q

2βpk´2q ` ...

“ p1´ ρ2qβpkq `
ÿ

i“1

ρi2p1´ ρ2q
iβpk´iq

g
pk`1q
1 “ ρ1g

pkq
1 ` p1´ ρ1qβ

2
pkq “ ρ1pg

pk´1q
1 ` p1´ ρ1qβ

2
pk´1qq ` p1´ ρ1qβ

2
pkq “ ...

“ p1´ ρ1qβ
2
pkq ` ρ1p1´ ρ1qβ

2
pk´1q ` ρ

2
1p1´ ρ1q

2β2
pk´2q ` ...

“ p1´ ρ1qβ
2
pkq `

ÿ

i“1

ρi1p1´ ρ1q
iβ2
pk´iq

The learning rate denominator becomes:

d

γ0 ` p1´ ρ1qβ2
pkq `

ÿ

i“1

ρi1p1´ ρ1q
iβ2
pk´iq ´

´

p1´ ρ2qβpkq `
ÿ

i“1

ρi2p1´ ρ2q
iβpk´iq

¯2

Hence the following inequality needs to be satisfied for the square root to be proper:

´

p1´ ρ2qβpkq `
ÿ

i“1

ρi2p1´ ρ2q
iβpk´iq

¯2

ă γ0 ` p1´ ρ1qβ
2
pkq `

ÿ

i“1

ρi1p1´ ρ1q
iβ2
pk´iq

Placing a constraint ρ1 “ ρ2 allows it to be reformulated:

´

ÿ

i“0

κiβpk´iq

¯2

ă γ0 `
ÿ

i“0

κiβ
2
pk´iq

and knowing that γ0 ą 0 and
ř

i“0 κi “ 0.05` 0.0475
1´0.0475

« 0.00013 ă 0 leads to:
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´

ÿ

i“0

κiβpiq

¯2

ď
ÿ

i“0

κiβ
2
piq

´

ÿ

i“0

κiβpiq

¯2

ď

´

ÿ

i“0

κiβ
2
piq

¯´

ÿ

i“0

κi

¯

ď
ÿ

i“0

κiβ
2
piq

arriving at a familiar Jensen’s inequality for non-negative weights κi and convex function

fpxq “ x2 which proves that learning rate is always proper:

´

ř

i“0 κiβpiq
ř

i“0 κi

¯2

ď

ř

i“0 κiβ
2
piq

ř

i“0 κi

5 Experimental methods and implementation details

The computational nature of a project required a slightly different definition of an ex-

periment which included training and evaluation procedures. Each model and its set of

hyperparameters were scrutinised on their convergence rate and final performance in com-

parison to a precomputed reference model.

5.1 ALE Atari emulator

The feasibility of the project was dependent on the ability of an agent to interact with

appropriate environments and, through doing so, learn how to do it in a return-maximising

way. Atari emulator, ALE [14], provides a convenient yet efficient way of simulating the

environment. It allows the agent to play any Atari-compatible game as long as its bin

file is supplied. Hence the agent may be easily tested on a variety of games exhibiting

different characteristics from simple ones like Pong up to more complicated ones like Raid.

Its C++ source code is available online on GitHub [15] allowing developers to easily mod-

ify it according to particular needs. One of its biggest advantages comes from the fact

that it implements the RL-Glue interface allowing to separate the environment from the

learning algorithm. It also enables agents to be written in other languages provided that

an appropriate interface porting exists.

5.2 RL-Glue

RL-Glue is a standard interface adopted by the AI and RL research communities which

implements the agent-environment model discussed in Section 2.1.1. It provides skeleton

implementations in different languages which are guaranteed to be cross-language com-

patible as, for example, agent written in Python may interact with ALE environment

developed in C++. Following the theoretical model, it requires implementations of the

agent, experiment and environment.
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5.2.1 Agent

The agent.py file is responsible for interacting with the environment and learning from its

experience. At each time step, it receives an observation and immediate reward from the

environment. Depending on a task, an observation is either a single number s P t0, ..., 29u

for the Grid world or a dump from emulator’s RAM memory which contains an array of

pixels in an RGB format as well as some other information to be discarded. In response,

it chooses an action and sends it over to the environment.

5.2.2 Experiment

The experiment.py file is responsible for setting up a framework for training and evaluation.

It specifies how many training episodes are run within each epoch as well as how often

agent’s performance is evaluated. In case of the Grid world, a single episode consisted of

at most 11 steps whereas in Breakout each episode was played till the agent lost while a

training epoch consisted of a total of 50000 frames played.

5.2.3 Environment

The environment.py component is responsible for simulating everything the agent is sur-

rounded by and may interact with. It creates a model which keeps track of and modifies

its state based on actions taken by the agent also providing it with immediate rewards. It

may be stochastic however both the Grid world and ALE are deterministic in their nature.

5.3 Agent program design

The main goal of the project is to create an algorithm capable of learning how to traverse

through the Grid world or play Breakout efficiently in order to collect highest rewards. The

responsibility for coming up with the optimal policy to follow lies solely on the agent hence

making it the most important and complex part of the project. In order to break-down its

complexity into manageable chunks and support two tasks simultaneously, it is crucial for

the program to be designed in a modular, object-oriented way. The agent may be split into

four main, independent components as shown on Figure 12. Designing each component as

a separate abstract class with inherited various implementations allowed for easy switching

between them without making significant changes to the agent.py program:

• Q-learning algorithm - Q Approximator

• Agent’s exploration and exploitation strategy - Epsilon scheduler

• Interaction data history - Sampler

• Input preprocessing front-end - Observation preprocessor
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Observation
preprocessor

Q Approximator

RL-AgentSampler Epsilon scheduler

Figure 12: High level diagram of a program’s structure

5.3.1 Q Approximator

Task Approximator
Grid world Dynamic Programming

Linear architectures RBFs
Neural network
Convolutional neural network

Breakout Convolutional neural network

Table 3: Q function approximators implemented

5.3.2 Sampler

The main task of the Sampler class family is to create and maintain a dataset of past

sample tuples ps, a, r, t, s1q collected at each time step for later use in Q-learning. It may

be queried for a set of samples at any time by the agent in order to perform stochastic

parameter updates. It is important to note that a Q-learning algorithm makes use of a

TD-estimate pr ` γmaxa1 Qps1, a1qq in gradient descent however the Sampler should not

store its value as part of a tuple. The maxa1 Qps1, a1q estimate needs to be evaluated at the

time of the parameter update but kept constant while optimizing.

For the purpose of this report, four different sampler types were used depending on the

application as listed in Table 4:

Type Storage Retrieval
Finite Most recent N Most recent k ď N
Infinite All interactions Most recent or random k
Online Most recent one Most recent one
Experience replay Most recent N Random k

Table 4: Sampler types implemented
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5.3.3 Epsilon scheduler

The importance of agent’s strategy in learning is discussed in Section 2.5 and the epsilon-

Schedule class family implements the ε-greedy strategy. Its responsibility is to decide how

the epsilon parameter should vary over time as the agent gains experience of the environ-

ment. For the purpose of this report, two schedules were implemented although they can

easily be extended to include other ones such as quadratic or even use a strategy different

from ε-greedy.

Type Formula
Constant εptq “ ε0

Linear εptq “ min
´

1,max
`

ε0, 1´
pt´t0qp1´ε0q

t1´t0

˘

¯

Table 5: Epsilon schedules implemented

Note: Linear schedule starts off at 1 till t “ t0 and is annealed to reach ε0 at t “ t1 and

stay constant thereafter.

5.3.4 Observation preprocessor

The observationPreprocessor class family is a front-end to the designed system and imple-

ments input preprocessings described in Sections 4.2.1 and 4.3.1. As shown on Figure 12,

it actually belongs to the Q Approximator class instead of the RL-Agent since it is specific

to the approximator model used. Such separation of components proved beneficial when

halfway through the project ALE emulator’s author commited a modification switching

visual feed’s colour format from NTSC to RGB which required altering just a few lines of

code to accomodate the change.

Task State description
Grid world tile number

indicator vector
Breakout concatenated frames

Table 6: Input preprocessors implemented

5.3.5 Version control

One of the challenges associated with the chosen project was its inherent complexity due to

the number of various components needed to build an entire system and different software

packages to be used. Hence managing complexity over project’s time span was necessary

for its successful completion. A particularly useful tool in running software projects which

are worked on by multiple teams at once is version control. Although the program was

developed by one person, implementing different components simultaneously and transfer-

ring code onto a computing unit was made much easier through using Git and hosting the

code base on a private GitHub account. It also sped up the debugging process by tracing

a history of commits available both online and locally on individual machines.
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5.3.6 Test driven design

Another useful concept while building a multi-component software system is a test driven

development approach which allows to isolate bugs and tackle system integration prob-

lems more easily. Although none of the Python’s automated testings were used as part

of the project, more informal tests were used extensively to check individual components

both from purely software-correctness perspective as well as from Reinforcement Learning

algorithmic point of view. In fact, the introduction of a secondary task - the Grid world

- is an exemplary of a test driven approach. In addition, any changes made to existing

functionality or an internal implementation of a given component were tested against its

previous version.

The modular design of an entire system made it easier to debug the most complex algorith-

mically part of the project that is of convolutional neural network based Q learning. For

instance, observation preprocessing component allowed to suppress the visual feed from

ALE and replace it with a set of predefined simple patterns with associated rewards. In

order to check if the network was capable of recognizing them each sample was flagged as

terminal to remove the effect of the Temporal Differences estimates. Figure 13 shows a Q

value plot for two of the predefined patterns with two possible actions each. Two input

pairs were associated with a reward of 55 and the remaining ones with 1. The network

converges for both of them with relative ease exhibiting stochastic fluctuations around

target values due to the ε-greedy strategy.

Note: the legend hides an initial part of a graph however the more important fact is its

convergence later. Also, the model did not enforce positive outputs hence Q value became

negative a few times despite the lack of negative rewards.

Figure 13: Q function estimates of predefined patterns

26



5.4 Performance improvement modifications

5.4.1 Sampler

There are a few possible ways of storing interaction data internally trading off storage

space and time complexity of retrieval. Throughout the course of the project the inter-

nal implementation changed several times to meet gradually more demanding performance

requirements. Initially, the Sampler stored ps, a, r, t, s1q tuples where s, s1 represent prepro-

cessed states corresponding to concatenated four display values which had no overlapping

observations. In the meantime, it turned out that the computing unit ran out of mem-

ory much sooner than needed. A quick inspection of the initial method suggested tuples

ps, a, r, tq to be stored instead effectively doubling storage capacity as pa, r, tq elements take

up negligible amount of space compared to the visual feed. Despite being able to store

350000 distinct tuples, the algorithm still yielded unsatisfactory results as shown below.

Figures 14 and 15 indicate that the sampler reached its full capacity at the same time

as the algorithm finished the exploration phase with epsilon reaching 0.1. Q-values of a

heldout test set reached its peak about 1000 episodes later only to drop down to around 3

after 4000 episodes corresponding to a naive policy of waiting in one corner and resulting

in scoring 3 bricks. It is important to note that by that time all the exploration sam-

ples were replaced by those obtained with epsilon set to 0.1 suggesting that the algorithm

needed to use a longer history of more diverse samples. Hence the final modification of

Sampler’s internals changed the basic storage unit to a tuple of pd, a, r, tq, where d is a

single frame displayed allowing for states s “ rd1, d2, d3, d4s to overlap by sharing frames,

for example s1 “ rd1, d2, d3, d4s and s2 “ rd2, d3, d4, d5s. Such change effectively further

quadrupled the storage capacity since each observation d could be part of four distinct

states allowing a history of most recent 106 frames to be stored on a computing unit used.

However it is important to be careful while selecting random samples from such dataset

since a state should be composed of samples from the same episode or, in other words,

should not include a terminal frame unless it is located at the end.
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Figure 14: Epsilon schedule Figure 15: Memory consumption

Figure 16: Q value estimate with insufficient training data

5.4.2 Observation preprocessor

During the design stage two image processing libraries were considered for the interpolation

routine - Scipy and OpenCV. Both of them produced similar images as shown on Figures 17

and 18 however the algorithm proved to be very sensitive to input’s preprocessing and

yielded better results when the former method was used. This is probably due to the fact

that the latter interpolator smeared the edges more making it harder for the algorithm to

discern contours.
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Figure 17: OpenCV interpolation Figure 18: Scipy interpolation

5.4.3 Further convolutional neural network testing

The final stage of the project - training of the whole system - turned out to be more

challenging than expected due to a computational expense and scarcity of useful diag-

nostic tools. It was particularly hard to spot any anomalies in the exploration phase at

the beginning of training hence requiring several hours of computation before making any

changes to the source code. Lacking satisfactory results, another diagnostic measure was

employed in order to disambiguate errors caused by the neural network training and the Q

learning algorithm. A natural approach was to extend the Grid world problem so that it

preserved its dynamics and could be represented by visual input. An easy way of doing so

was to associate each state with an image of, for example, MNIST digits [26] as shown on

Figure 19. For simplicity, a smaller 2 ˆ 2 grid was used with states represented by digits

from 0 to 3 whose optimal state-action values were easily obtained.

Introducing the extra diagnostic measure allowed to uncover a few smaller bugs in the code

increasing confidence in the program being capable of solving the primary task. Figure 20

shows that the neural network used learns to solve such simple task very quickly and with

sufficient precision. Fluctuations of the error value at convergence are expected due to

stochasticity introduced by linearly annealed epsilon coefficient to 0.1.

Figure 19: MNIST visual representation of Grid world states
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Figure 20: Q function error of MNIST Grid world

5.4.4 Memory consumption

The main challenge from the software perspective arose directly from Breakout’s high-

dimensional input and hence a big neural network needed. In order to obtain robust coef-

ficient estimates, a large number of training samples and parameter updates was needed.

Considering that each frame in its raw form took around 100 kB, a target history length

would require around 96 GB of memory. Preprocessing each frame brought it down to

around 7.5 GB of RAM memory allocated purely for storing samples excluding any over-

head resulting from using Numpy objects. Huge memory requirements required a lot of

careful planning while implementing sample-processing classes to optimize for wasteful

allocation of Numpy objects while passing them from function to function. In order to

speed up parameter updates, every few thousand frames a large set of randomly selected

samples - around 3.6 GB - was transferred onto a GPU minimizing the number of costly

transfers from RAM memory. The update frequency and size of a single dataset moved to

the GPU offered a trade-off between parallel computation advantages and time overhead

needed for the transfer. It turned out that using less frequent but larger updates made

better use of GPU’s time and resulted in faster computation overall. The problem was,

however, that each out-of-order slicing of a Numpy array created a new one generating

a short-lived spike in memory consumption which could potentially cause a crash if the

system was running near its capacity. In addition, other parts of the system - RL-Glue

components and interface, Theano objects and the symbolic graph as well as regular OS

processes also required access to RAM memory. Overall, the whole system was projected

to stay in a dynamic balance using up almost all 15 GBs available.

It is also important to note that using CUDA to speed up computation required several

other modifications to the code including ensuring that Numpy arrays were C-contiguous

before transferring onto the GPU.
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5.4.5 Memory leaks

Designing a multi-component software project handling and processing large amounts of

data required careful planning aimed at stability. It was important to make sure that the

program did not crash because of an avoidable bug having completed, for example, 20 out

of 22 hours of computation. There are a few issues which needed to be taken into account in

order to ensure uninterrupted service however, given that Amazon AWS Cloud computing

was used, the computational unit was assumed to be stable. Hence all the emphasis was

placed at making the application stable. Processing a lot of data put extra pressure on the

memory system as described in Section 5.4.4 which mentioned a huge memory footprint

of necessary data storage components providing a lower bound on the usage. However, for

long-running processes it was essential to carefully scrutinize the program and eliminate

any potential memory leaks which could easily accumulate and destabilize the system. In

fact, such situation may be observed on Figure 22 where the usage grows quickly while new

samples are being added to the Sampler before reaching its capacity after 250 episodes. In

theory, the plot should have leveled off afterwards as the most memory-hungry component

did no longer expand. Nevertheless, the footprint kept growing steadily at a substantial

rate of a quarter of the previous one despite much lower memory pressure eventually caus-

ing the system to run out of memory. It turned out that the extra memory pressure was

caused by neural network parameter updates leaking around 10 MB per a cycle of 104

updates.

As a matter of fact the system started to learn better policies after implementing mod-

ifications which allowed to make use of a larger number of history samples described in

Section 5.4.1. For example, Figure 21 shows rewards achieved on performance runs at the

end of each epoch where the agent reached a reward of 17 after around 3 million frames

played. Visual inspection of the agent’s playing strategy and a quick look at state-action

values calculated in real time indicated that the algorithm improved on its estimates sub-

stantially compared to the initial random state. Unfortunately the memory leak caused

the system to run out of resources and crash after 3.5 million frames suggesting that fixing

it may lead to better performance.
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Figure 21: Reward graph Figure 22: Memory leak

5.4.6 Further memory usage optimization

Thorough inspection of project’s source code revealed a few unnecessary allocations of mul-

tidimensional Numpy arrays used for storing interaction samples and generating random

mini-batches used in stochastic gradient descent. In fact, garbage collection of these was

taken care of by the system hence turning out not to be a major issue. Further analysis

of other components showed that matplotlib library used for graph plotting leaked around

1MB per each figure saved to a file. As a solution, the data needed for plotting was saved

to a disk after each episode and plotted in a separate process afterwards. Figure 23 shows

that the memory consumption plot became more regular with each step-like increase cor-

responding to network’s parameter updates hence decreasing the overall memory leakage.

Further attempts to isolate the memory leak localised the bug to be either in data transfer

from RAM onto GPU’s memory or in Theano-based parameter updates. As it turned

out, disabling backpropagation of weight updates resulting in the application continuously

transfer new samples onto the GPU led to a flat long-term memory footprint as shown on

Figure 24 identifying the leakage source to be in parameter updates.

Figure 23: No graph plotting Figure 24: No parameter updates
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5.4.7 Convolutional neural network libraries

Identification of a memory leak caused by Theano’s automatic differentiation-based pa-

rameter updates allowed the debugging effort to focus on a very small part of the entire

program. Nevertheless, large dependence on a continuously-developed external library

made fixing the problem particularly difficult without knowing its internals. As such, one

possible solution attempt was to use a different library for convolutional operations out of

multiple available online [19]. As it turned out, two libraries used - cuDNN and convnet -

resulted in growing memory consumption as shown on Figures 25 and 26. Both implemen-

tations improved system’s performance compared to the standard Theano implementation

however convnet reduced the memory leak in half and hence was used in all later experi-

ments improving the situation slightly.

Note: sampler’s capacity was decreased to emphasise the memory leak effect. Also, vertical

scales of Figures below differ indicating memory leak’s reduction.

Figure 25: convnet memory consumption Figure 26: cuDNN memory consumption

5.4.8 Issues with Theano’s GPU backends

Further investigation of the memory leak and consultation with developer forums [27]

suggested that the bug might have been hidden inside Theano’s symbolic graph or GPU-

shared memory handling independent of project’s source code. Following the advice found

on the forum to switch to the newer GPU backend under development, libgpuarray [28],

resulted in the application being completely unstable. Running example MNIST code

found online also output multiple GPU memory errors confirming that the newer backend

was not ready to use yet.

5.5 Main languages and libraries used

5.5.1 Python

The majority of development was done in Python due to its ease of use as well as the

availability of widely used numerical, scientific and data processing packages kept up to

date by RL and data science communities. It also made running the same code on a GPU
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easier thanks to existing ports compatible with CUDA drivers and active communities

sharing development problems and debugging hints.

5.5.2 Theano

In principle it is relatively straightforward to implement a convolutional neural network

to perform forward computation and define correct backpropagation gradient updates.

However, not only does the size of a problem render such approach infeasible due to com-

putational inefficiencies but also it is not the main goal of the project. Instead, using

the Theano library for Python is a much better approach from both performance and

ease of development perspectives. It maintains a symbolic expressions graph providing

automatic differentiation and performing behind-the-scenes optimizations including dy-

namically generated, faster C code. It also supports a transparent memory model taking

care of transferring data onto a GPU.

5.5.3 C++

The only part of the project which used C++ was a modification of ALE to generate a Q

function test set. Nevertheless, C++ should be considered for future extensions if Python’s

interpretable nature proved to be a performance bottleneck.

5.6 High performance computing

The anticipated, computationally intensive nature of the project proved to be challenging

and made a few changes to the original project plan necessary. The majority of development

work, Grid world experiments and simple bug fixing of Breakout’s model was possible to

do on a Macbook Air. However, training a convolutional neural network of such scale

required a more powerful system especially capable of handling images and enabling parallel

computation thus suggesting the use of a GPU instead.

5.6.1 CUDA

CUDA is the most common and widely used API for general processing on high-end GPUs

developed by Nvidia. It has been actively developed for several years now allowing the

technology to become mature and user-friendly enough to gain traction. Initially, one of

the computers in the lab was supposed to be used for experiments however it turned out

that its hardware was too old to find drivers compatible with other libraries used and an

alternative solution had to be found.

5.6.2 Amazon AWS Cloud

Amazon’s Elastic Compute 2 cloud service gives easy access to high performance, on-

demand computing making it very easy to scale up or down by adding new processing

instances depending on the workload. Most instance types include high-performance CPUs

and only recently a new instance type was added - g2.2xlarge [16] - which features an up-

to-date GPU with 15 GBs of RAM and a fast SSD drive.
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5.6.3 Debugging GPU code

Moving computation and model training onto a GPU turned out to be quite tricky due to

the lack of previous exposure to programming on CUDA. It was particularly important to

make sure that parallel computation on a GPU had access to all the data it needed in its

local memory without having to query the CPU as it would have slowed down calculations

significantly. A considerable effort was put into debugging the initially underperforming

code due to scarcity of user-friendly GPU debugging tools. In the end it turned out that

one of the convolutional operators in Theano had a bug preventing it from performing

efficient computation using CUDA and hence required using a diffferent, Nvidia provided,

cuDNN library.

5.7 Diagnostic routines

Despite using high performance computing units featuring powerful CUDA-capable GPUs,

the computational challenges were still significant considering that an agent needed to play

around 10 million frames corresponding to roughly 150 hours of uninterrupted playing time.

Factoring in time needed to perform stochastic parameter updates it turned out that the

algorithm needed around 15-20 hours of computing time to yield relatively reliable Q func-

tion value estimates showing signs of learning. A long training procedure increased the

development iteration time considerably putting more emphasis on careful code improve-

ments before starting a new training procedure. In fact, it was really hard to tell if the

algorithm had a bug or if it was making progress during training and hence a few diagnostic

measures were used to help spot obvious mistakes including:

• Memory consumption

• Q-function estimate on the heldout set

• Epsilon schedule

• Average performance runs rewards

• Maximum absolute values of:

– RMSProp running averages

– Weights in each layer

– Biases in each layer

6 Evaluation procedures

An essential part of the project and all the experiments involved is setting up training and

evaluation procedures of algorithms involved. RL algorithms can generally be assessed

according to three criteria - speed of learning, convergence of the Q value function and

performance in completing a task by following estimated optimal policy. Both tasks - the
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Grid world and Breakout - differ when it comes to the size of a state space making it

impossible to evaluate their performance using the same methods.

6.1 Grid World

Small size of Grid World’s state and action sets, |S| “ 30, |A| “ 4, allowed for exact calcula-

tion of optimal Q values for each state-action pair either by using TD or DP methods as the

exact model of the environment was known. Hence a reasonable assessment method was to

precompute a vector of optimal Q values and plot a graph of the L2-norm error of learnt es-

timtes for all possible states for a set of parameters ω -
ř

sPS ||Qoptimalpsq´maxaQps, a, ωq||
2.

Evaluating such graphs allowed for comparing algorithms and hyperparameters with re-

spect to their convergence rates and final errors. In principle it was also possible to plot

the score of an agent after a test run without ε-greedy strategy. However, the small scale of

a problem and high probability of an agent reaching the reward tile made it uninformative.

In most cases it may be beneficial to generate a visualisation of the optimal Q function

values for all the states as shown on Figure 27. Colour of each tile corresponds to func-

tion’s value where blue is the lowest and red is the highest. In general, exact values are less

important than graph’s characteristics due to the possibility of using different discounting

values. For example, due to symmetry of the problem all tiles equidistant to the top left

corner in the Manhattan norm should be of the same colour. Also, closer tiles should be

marked by warmer and farther ones by colder colours due to discounting used.

Furthermore, it is useful to compare a learnt policy with the optimal one shown on Figure 28

by plotting the count of discrepancies between them.

Figure 27: Q function visualisation

1

Figure 28: Grid world’s optimal policy

6.2 Breakout

The Breakout problem is fundamentally different from the Grid world in a sense that it

is infeasible to compute L2-norm error for each of the distinct states let alone calculate

exact optimal values of a Q-function due to the size of a problem. Instead it is possible

to evaluate how
´

maxsPT maxaQps, aq
¯

changes for a set of held out states T over time

as the agent gains experience. For the purpose of this report, a collection of 128 states
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was obtained by saving random screenshots from a manually played game. Modification of

ALE’s manual agent’s source code made sure that consecutive states were distinct enough

by introducing an appropriate time delay between them. Also, manual control allowed to

include a diverse set of samples ranging from starting positions up to high-score ones.

Another evaluation metric used in this report is the reward obtained in a performance

run after completing each epoch of training. It is characterised by setting ε “ 0.05 [20]

which effectively means that the agent tries to play optimally with a very small degree of

stochasticity simulating a real game.

7 Results

Note: all the Figures included in this Section can be found in higher resolution on a CD

disk attached to this report.

7.1 Grid World

Secondary task - the Grid World - served as a testbed of three Reinforcement Learning

algorithms in four different hyperparameter configurations. Each method was used with

both online and Experience Replay sampling as well as with both constant and linearly

annealed epsilon schedules on a training run of 3000 episodes to ensure fair comparison.

In case of ER, each mini-batch consisted of 15 samples drawn at random from a history

of the most recent 500 observations. Each time measurement was taken under the same

machine load conditions.

7.1.1 Exact Q-learning

Figure 29: Exact Q-learning, online sampling, constant epsilon ε “ 0.1
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Figure 30: Exact Q-learning, online sampling, linearly annealed epsilon to ε “ 0.1

Figure 31: Exact Q-learning, ER sampling, constant epsilon ε “ 0.1

Figure 32: Exact Q-learning, ER sampling, linearly annealed epsilon to ε “ 0.1

7.1.2 Linear architectures

Figure 33: Linear architectures, online sampling, linearly annealed epsilon ε “ 0.1
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Figure 34: Linear architectures, online sampling, constant epsilon ε “ 0.1

Figure 35: Linear architectures, ER sampling, linearly annealed epsilon to ε “ 0.1

Figure 36: Linear architectures, ER sampling, constant epsilon ε “ 0.1

7.1.3 Neural network

Figure 37: Neural network, online sampling, linearly annealed epsilon to ε “ 0.1
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Figure 38: Neural network, online sampling, constant epsilon ε “ 0.1

Figure 39: Neural network, ER sampling, constant epsilon ε “ 0.1

Figure 40: Neural network, ER sampling, linearly annealed epsilon to ε “ 0.1

7.1.4 Execution time comparison

Exact Q-learning Linear architectures Neural network
Online sampling, constant epsilon 23s 71s 32s
Online sampling, linearly annealed epsilon 21s 69s 30s
ER sampling, constant epsilon 36s 582s 70s
ER sampling, linearly annealed epsilon 37s 589s 68s

Table 7: Algorithms’ execution time data

7.2 Breakout

Graphs included in this Section can be divided into several categories depending on their

role. Plots of average Q value of the manually crafted test set and average rewards col-

lected in performance runs serve as main performance metrics in evaluation whether the
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agent learns. In theory, average Q value of a heldout test set should gradually increase

as the agent gains experience reaching value of around 5 ´ 10 eventually. It may be used

in conjunction with epsilon schedules to see what happens once the agent stops exploring.

Average rewards were computed over multiple performance runs to minimize the effect of

game’s stochasticity.

On the other hand, maximum model parameters plots were used for debugging and spot-

ting extraordinary behaviour which could lead to divergence. Maximum learning rates in

RMSProp were also calculated and printed out after each update however their plots were

not necessary to include. Other screenshots were included to point out certain algorithm

features and bahaviours discussed in Section 8.

Note: although some parts of graphs included are hidden behind plot legends, initial

behaviour is less important than the long term one including convergence. Also, all the

plots were obtained at a time when the system ran out of memory.

7.2.1 Performance of RMSProp

Figure 41: Q values of a heldout set Figure 42: Maximum parameters per layer

Figure 43: Epsilon schedule Figure 44: Average reward
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7.2.2 Performance of extended RMSProp

Figure 45: Q values of a heldout set Figure 46: Maximum parameters per layer

Figure 47: Epsilon schedule Figure 48: Average reward

7.2.3 Divergent behaviour

Tweaking the learning rate constant from α “ 2 ˆ 10´4 to α “ 3 ˆ 10´4 resulted in the

neural network becoming divergent as shown on Figure 49. Similar behaviour was observed

when γ0 “ 10´3 was used instead of γ0 “ 10´2.

Figure 49: Neural network’s divergent behaviour
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7.2.4 Best performance screenshots

Screenshots were taken at the end of best performance runs during training.

Figure 50: Best result, RMSProp Figure 51: Best result, extended RMSProp

7.2.5 Q values propagation

Figures 52-54 show the Q value estimates of game states presented rQps, a1q, Qps, a2q, Qps, a3qs,

where pa1, a2, a3q correspond to going left, right and not moving.

Left Right Stay
Before 0.711 0.708 0.706
On impact 0.733 0.729 0.726
After 0.684 0.677 0.675

Table 8: Q value estimates

Figure 52: Before Figure 53: On impact Figure 54: After

7.2.6 Convolutional kernels

Figures 55 show two example convolutional kernels learnt by the lowest layer discussed in

Section 8.2.5.
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Figure 55: Examples of 8ˆ 8 kernels learnt using MNIST Grid world representation

7.2.7 Translated trajectories

Figure 56 shows a diagram of ball’s trajectories which result in similar CNN’s responses

discussed in Section 8.2.3

Figure 56: Translated trajectories

8 Discussion

8.1 Grid world

8.1.1 State-action convergence

Grid world is one of the simplest RL algorithms and hence it is unsurprising that all three

correctly-implemented methods yielded satisfactory results. All of them managed to learn

relatively good estimates of the value functions as well as policies quite close to the optimal

one in most cases. Nevertheless there are a couple of differences worth pointing out. State-

action value function error plots shown on Figures 29-32 for exact Q-learning converge

noticeably faster than others and fluctuate considerably less as expected since each update

affects just a single value estimate. On the other hand, approximate Q-learning techniques

exhibited much more stochasticity due to parameter interdependence between estimates

for different state-action pairs. Q function error plots tend to decrease more rapidly and

converge slightly faster for linear architectures compared to a neural network although the
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latter shows a smoother trend.

8.1.2 Policies

For small problems it is also possible to compare learnt policies with the optimal one by

evaluating the number of discrepancies. Policies are generated based on value functions

computed and hence in all cases policy-error plots follow similar trends to their value func-

tion counterparts both converging and featuring stochastic fluctuations. It is interesting

to note that exact Q-learning results included in Section 7.1.1 show that policies converge

later than the value function whereas for the two approximate methods the situation is

exactly opposite. It happens that the algorithm finds good policies early on and uses them

to improve its estimates of value functions later on.

Also, policy-error graphs for a neural network based Q-learning algorithm on Figures 37-40

tend to fluctuate significantly more than all other ones suggesting that each parameter up-

date affects state-action value estimates of many pairs. In fact, a single feedforward neural

network is used to obtain all action-value estimates of a given state and hence there is a

lot of interdependence between different pairs. Also, all the model parameters carry the

same weight in computations for any input decreasing the level of adaptation of individual

neurons. On the other hand, linear architectures model uses separate sets of parameters

for each action and distance dependent RBFs lowering the effect of a single parameter

update on other state-action pairs. In theory each stochastic gradient iteration updates

all the model parameters however the use of fast-decaying RBFs limits its impact to just

a few tiles neighbouring in space.

It is also worth mentioning that using a linearly annealed value of epsilon usually resulted

in better policies learnt as indicated by less stochasticity at convergence due to an extensive

initial exploration.

8.1.3 Q visualisations

Colourful visualisations of optimal state-action values offered a good diagnostic measure

while debugging the code as well as a good qualitative indicator of the converged parame-

ters. A glance at the colour distribution across the Grid allows for a quick check whether

obtained estimates satisfy requirements laid out in Section 6.1. As it turned out, both

exact and neural network approximations produced plots of similar quality whereas lin-

ear architecture ones were considerably worse. It is especially surprising considering how

varying corresponding policy errors were for the neural network case.

8.1.4 The effect of Experience Replay and Online sampling

Choice of the sampling strategy also has an impact on the behaviour of algorithms con-

sidered. In general it did not affect convergence rates as in most cases the agent reached

its equilibrium state at a similar time. However, graphs obtained using online sampling
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tend to show a higher degree of variability since a single update has a considerably greater

effect. ER, however, smoothed the state-action value’s error as combining samples of, on

average, different characteristics made changes in the Q function less drastic. It does not

make learning much faster as expected from the Breakout problem, as states are less cor-

related between one another.

ER’s characteristic behaviour can be observed on Figures 35-36 where the error initially

increased and then rapidly decreased to the converged value. These bumps can be explained

by the fact that the algorithm most likely used not-so-great samples from its playing

experience before it found a better trajectory through the state space and converged.

8.1.5 Parameter counts

Comparison of the two approximate Q-learning models requires taking into account both

their approximating capacities and numbers of parameters used. Fixing properties of basis

functions for a linear architectures model led to the total count of 20ˆ 4 “ 80 parameters

compared to neural network’s 54 including weights and biases. In theory, a neural network

is a universal approximator [11] and it does quite well compared to other models given

smaller number of parameters especially in Q value function visualisations. It also has

a slight advantage in that it does not require any problem-specific tailoring compared to

space-distributed RBFs of linear architectures and may be treated as a black-box. In fact,

it may be useful to use a popular neural networks technique, dropout [17], for the Grid

world in future work. In principle, it would encourage certain neurons to specialise in

a similar way RBFs make some parameters more important than others by using fast-

decaying Cartesian-distance-dependent basis functions.

8.1.6 Computational expense

Evaluation of algorithms does not only require comparing their performance but also com-

putational and storage expenses associated. Neural network based approach, even though

it uses a single model for all actions, requires a whole feedforward pass to obtain value

estimates for a given state resulting in 16 multiplications and 16 additions whereas a lin-

ear architectures model needs 20 sums and 20 RBF evaluations which are considerably

more expensive. The difference between algorithms is reflected in computation time mea-

surements where linear architectures are considerably slower than a neural network using

respective hyperparameter settings. Exact Q-learning is the fastest one since each update

affects just a single parameter and it does not use gradient descent.

On the other hand, Experience Replay changes storage requirements substantially as it

requires a history of recent samples to be stored although less frequent updates may result

in a computational advantage due to fewer passes both through a neural network and a

linear architecture model. Using an average least squares cost over a mini-batch is espe-
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cially useful when much larger models are used reducing the computational workload.

It is interesting to note that using ER with linear architectures resulted in a much greater

performance penalty compared to neural networks not only because basis functions are

more expensive to compute but also because neural network libraries are optimized towards

using mini-batches.

8.2 Breakout

8.2.1 Difficulties in training

The scale of the Breakout task makes it considerably hard to train the network and obtain

parameters yielding good performance. The crucial part of training is the initial exploration

with high epsilon value allowing for many random actions to be taken. On average, it leads

to collecting samples from many stages of a game allowing their values to propagate later

during the exploitation stage. Despite that, the algorithm often ended up learning a

suboptimal policy of staying in the corner as shown on Figure 57. Such strategy gives a

reward of around 4-5 since at each restart the ball is thrown at 45˝ angles either from the

centre or one of the two sides. Once the epsilon reaches its final value of 0.1, the algorithm

simply keeps playing in the same way with small amount of stochasticity without much

improvement in performance. Such situation might be caused by ending up in a bad local

minimum of a cost function, slow learning or too short initial exploration phase.

Figure 57: Bad local minimum policy learnt

8.2.2 Two CNN architectures

Results obtained towards the end of the project and memory problems encountered sug-

gested using a smaller network which would include fewer parameters and hence require

shorter training. Reducing the number of hidden units by half in the hidden layer and re-

moving one convolutional layer corresponded to a significant decrease in complexity as the

majority of parameters was actually located in the fully-connected layer. The modification

improved the performance of the system considerably as it began to show signs of learning

despite limited training time.
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8.2.3 Training routine

Lengthy training of the overall system is crucial both from the Reinforcement Learning

as well as from convolutional neural network’s perspective. It needs to allow the agent to

explore the state-space as well as obtain reasonable parameter estimates. Although it is

impossible for the agent to visit every possible state, the main idea behind it is based on the

notion of state similarity. Even though the agent may not have visited a particular state,

there is a chance it has visited a similar one before and hence it may react reasonably.

Convolutional layers provide invariance to feature translation aiding evaluation of states’

similarity as, for example, a stationary paddle may bounce back balls following several

translated trajectories as shown in Section 7.2.7 which are similar in a convolutional neural

network sense.

8.2.4 Sensitivity to the learning rate

One of the issues related to agent’s training was the choice of hyperparameters and learn-

ing rate scheme. Similarly to other Machine Learning algorithms, the training procedure

was very sensitive to the value of a learning rate constant in stochastic gradient updates.

Given the size of a model, it was especially important to select a learning scheme which

would result in faster convergence given that observed rewards were very sparse and had

to be propagated throughout the state space. Several trial-and-error attempts at selecting

constants, namely the learning rate α and γ0 used in RMSProp, led to network’s divergent

behaviour. It is especially clear in Section 7.2.5 which presents Q value estimates around

the first brick scored in a game of a total score of 6. It is clear that the effects of the first hit

have propagated to preceding states exhibiting smooth increase due to discounting how-

ever rewards obtained later in the game have not yet. In principle, Q value indicates an

expected discounted return starting from a given state hence one should expect preceding

states to have higher estimates given that the agent was capable of scoring 6 bricks. It

suggests that longer training or a more efficient learning rate scheme would improve the

situation.

Unfortunately due to the lack of resources, memory leaks and limited time it was impossible

to compare the performance of adding a momentum term or of using different adaptive

learning schemes including Adadelta [22] and Adam [21]. RMSProp and its extension

described in Sections 4.3.8 and 4.3.9 provided similar performance although there could

have been other differences observed between them if the entire training procedure had

been completed. The extended RMSProp did not deliver significant performance gains to

justify a 40% increase in the time taken to perform an update and a 50% increase in the

number of model parameters. Also, more computational resources and time available would

allow for better tuning of learning schedule parameters used as well as a more thorough

analysis of individual neural network design decisions.
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8.2.5 Kernels

One of the more interesting aspects of analysing neural networks tailored for images is a

glance at the optimized convolutional kernels which correspond to features the network

has learnt to react to. For large datasets of real world pictures [7] they usually represent

a hierarchy of features ranging from low-level edges up to more complicated structures.

Hence it would be interesting to note the particular representations the agent found most

useful to play Breakout. Unfortunately due to incomplete training, robustly estimated

filters were only found for the 2D-MNIST-extended Grid world probem. Despite the fact

that the network managed to approximate the Q-function well, its complexity was too large

for such a simple task leading to parameter overfitting characterised by seemingly noisy

filters learnt.

8.2.6 Exploration - exploitation strategy

Unsatisfactory learning performance of the algorithm discussed above despite incomplete

training procedure suggests that some modifications should be made. Given more time

and resources, it would be interesting to extend the exploration stage allowing for more

frequent visits at high-score states hence possibly aiding propagation of reward signals

through the state space. Also, samples used in stochastic descent could be drawn from a

non-uniform distribution selecting states closer to a reward more often [30].

9 Conclusions

9.1 The importance of the Grid World task

The introduction of the secondary problem of smaller scale, namely the Grid world, and

its variations proved to be critical to the development and progress made throughout

the entire project. It allowed for easier understanding of the Reinforcement Learning

framework, algorithms and challenges involved in solving RL tasks. In conjunction with

careful planning and modular software design it was possible to apply the same algorithms

to both problems. Performance evaluation on a smaller task gave extra confidence in their

correctness before running a lengthier training procedure for Breakout. In the end, the

original plan was modified to include the Grid world adapted for 2D input in order to aid

debugging of the convolutional neural network.

9.2 Complexity of the project

Broad scope of the project and an enormous computational expense of training model

parameters on the Breakout problem turned out to cause the majority of obstacles en-

countered over the course of the project. After all, object oriented modular approach to

designing software and careful planning allowed for graceful handling of gradually increas-

ing complexity. Nevertheless, several iterations of most critical components were needed in

order to yield satisfactory computational performance. In fact, the hardest issue to over-
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come arose from using an external library Theano where the main memory leak was located.

It is also important to mention the importance of using a suitable type of high-performance

computing facilities geared towards models used in the project. It would have been infea-

sible to train the algorithm on a system with a powerful CPU chip which is the case for

computing facilities available in the DPO. Highly parallel nature of a neural network as well

as countless transformations of 2D data are especially suitable for processing on a GPU

offering a roughly tenfold speedup. Nevertheless, using a single computing unit proved

to be a bottleneck given a lengthy training scheme needed preventing any fine tuning of

hyperparameters.

9.3 Future work

In addition to optimizing performance and fixing memory leaks needed for successful train-

ing of a deep neural network model, methods used in this project can be modified in a

number of ways possibly improving both learning and computational performance. These

include but are not limited to different neural network architectures, initialization and

optimization schemes, agent’s strategies as well as front-end input preprocessing.

In addition, it would be interesting to apply the same model to a real-world task where

signals of rewards and states from the environment are much noisier. A lot of simple

problems can be controlled using a small set of actions, represented by a visual feed and

solved relatively easily using a different state form. A good example of such is a double

inverted pendulum problem [25] where the state could be obtained from a live video feed

similar to Breakout.

A Risk assessment retrospective

Hazards related to extensive computer usage while working on the project were correctly

anticipated and hence were successfully avoided. Striking a right balance between work and

time off, including frequent breakes for quick physical exercises, was crucial for avoiding

injuries.
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